91 research outputs found

    Re-Annotator: Annotation Pipeline for Microarray Probe Sequences.

    Get PDF
    Microarray technologies are established approaches for high throughput gene expression, methylation and genotyping analysis. An accurate mapping of the array probes is essential to generate reliable biological findings. However, manufacturers of the microarray platforms typically provide incomplete and outdated annotation tables, which often rely on older genome and transcriptome versions that differ substantially from up-to-date sequence databases. Here, we present the Re-Annotator, a re-annotation pipeline for microarray probe sequences. It is primarily designed for gene expression microarrays but can also be adapted to other types of microarrays. The Re-Annotator uses a custom-built mRNA reference database to identify the positions of gene expression array probe sequences. We applied Re-Annotator to the Illumina Human-HT12 v4 microarray platform and found that about one quarter (25%) of the probes differed from the manufacturer's annotation. In further computational experiments on experimental gene expression data, we compared Re-Annotator to another probe re-annotation tool, ReMOAT, and found that Re-Annotator provided an improved re-annotation of microarray probes. A thorough re-annotation of probe information is crucial to any microarray analysis. The Re-Annotator pipeline is freely available at http://sourceforge.net/projects/reannotator along with re-annotated files for Illumina microarrays HumanHT-12 v3/v4 and MouseRef-8 v2

    DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning

    Get PDF
    Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe \textquotedblDeepWAS\textquotedbl, a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals). These variants were mainly non-coding and reached at least nominal significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs. DSNPs were enriched in public or cohort-matched expression and methylation quantitative trait loci and we demonstrated the potential of DeepWAS to generate testable functional hypotheses based on genotype data alone. DeepWAS is available at https://github.com/cellmapslab/DeepWAS

    DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning

    Get PDF
    Genome-wide association studies (GWAS) identify genetic variants associated with quantitative traits or disease. Thus, GWAS never directly link variants to regulatory mechanisms, which, in turn, are typically inferred during post-hoc analyses. In parallel, a recent deep learning-based method allows for prediction of regulatory effects per variant on currently up to 1,000 cell type-specific chromatin features. We here describe “DeepWAS”, a new approach that directly integrates predictions of these regulatory effects of single variants into a multivariate GWAS setting. As a result, single variants associated with a trait or disease are, by design, coupled to their impact on a chromatin feature in a cell type. Up to 40,000 regulatory single-nucleotide polymorphisms (SNPs) were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals) to each identify 43-61 regulatory SNPs, called deepSNPs, which are shown to reach at least nominal significance in large GWAS. MS- and height-specific deepSNPs resided in active chromatin and introns, whereas MDD-specific deepSNPs located mostly to intragenic regions and repressive chromatin states. We found deepSNPs to be enriched in public or cohort-matched expression and methylation quantitative trait loci and demonstrate the potential of the DeepWAS method to directly generate testable functional hypotheses based on genotype data alone. DeepWAS is an innovative GWAS approach with the power to identify individual SNPs in non-coding regions with gene regulatory capacity with a joint contribution to disease risk. DeepWAS is available at https://github.com/cellmapslab/DeepWAS

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis

    DeepWAS: multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning

    Get PDF
    Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe "DeepWAS", a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals). These variants were mainly non-coding and reached at least nominal significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs. DSNPs were enriched in public or cohort-matched expression and methylation quantitative trait loci and we demonstrated the potential of DeepWAS to generate testable functional hypotheses based on genotype data alone. DeepWAS is available at https://github.com/cellmapslab/DeepWAS

    A polyepigenetic glucocorticoid exposure score at birth and childhood mental and behavioral disorders

    Get PDF
    BackgroundMaternal depression and anxiety during pregnancy may enhance fetal exposure to glucocorticoids (GCs) and harm neurodevelopment. We tested whether a novel cross-tissue polyepigenetic biomarker indicative of in utero exposure to GC is associated with mental and behavioral disorders and their severity in children, possibly mediating the associations between maternal prenatal depressive and anxiety symptoms and these child outcomes.MethodsChildren (n = 814) from the Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction (PREDO) study were followed-up from birth to age 7.1–10.7 years. A weighted polyepigenetic GC exposure score was calculated based on the methylation profile of 24 CpGs from umbilical cord blood. Child diagnosis of mental and behavioral disorder (n = 99) and its severity, defined as the number of days the child had received treatment (all 99 had received outpatient treatment and 8 had been additionally in inpatient treatment) for mental or behavioral disorder as the primary diagnosis, came from the Care Register for Health Care. Mothers (n = 408) reported on child total behavior problems at child's age of 2.3–5.8 years and their own depressive and anxiety symptoms during pregnancy (n = 583).ResultsThe fetal polyepigenetic GC exposure score at birth was not associated with child hazard of mental and behavioral disorder (HR = 0.82, 95% CI 0.54; 1.24, p = 0.35) or total behavior problems (unstandardized beta = −0.10, 95% CI -0.31; 0.10, p = 0.33). However, for one standard deviation decrease in the polyepigenetic score, the child had spent 2.94 (95%CI 1.59; 5.45, p ConclusionsThese findings suggest that fetal polyepigenetic GC exposure score at birth was not associated with any mental or behavioral disorder diagnosis or mother-rated total behavior problems, but it may contribute to identifying children at birth who are at risk for more severe mental or behavioral disorders.</p

    Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-kappa B-driven inflammation and cardiovascular risk

    Get PDF
    Aging and psychosocial stress are associated with increased inflammation and disease risk, but the underlying molecular mechanisms are unclear. Because both aging and stress are also associated with lasting epigenetic changes, a plausible hypothesis is that stress along the lifespan could confer disease risk through epigenetic effects on molecules involved in inflammatory processes. Here, by combining large-scale analyses in human cohorts with experiments in cells, we report that FKBP5, a protein implicated in stress physiology, contributes to these relations. Across independent human cohorts (total n > 3,000), aging synergized with stress-related phenotypes, measured with childhood trauma and major depression questionnaires, to epigenetically up-regulate FKBP5 expression. These age/stress-related epigenetic effects were recapitulated in a cellular model of replicative senescence, whereby we exposed replicating human fibroblasts to stress (glucocorticoid) hormones. Unbiased genome-wide analyses in human blood linked higher FKBP5 mRNA with a proinflammatory profile and altered NF-kappa B-related gene networks. Accordingly, experiments in immune cells showed that higher FKBP5 promotes inflammation by strengthening the interactions of NF-kappa B regulatory kinases, whereas opposing FKBP5 either by genetic deletion (CRISPR/Cas9-mediated) or selective pharmacological inhibition prevented the effects on NF-kappa B. Further, the age/stress-related epigenetic signature enhanced FKBP5 response to NF-kappa B through a positive feedback loop and was present in individuals with a history of acute myocardial infarction, a disease state linked to peripheral inflammation. These findings suggest that aging/stress-driven FKBP5-NF-kappa B signaling mediates inflammation, potentially contributing to cardiovascular risk, and may thus point to novel biomarker and treatment possibilities.Peer reviewe

    Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    Get PDF
    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes1, with epidemiological association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment

    An analysis of gene expression in PTSD implicates genes involved in the glucocorticoid receptor pathway and neural responses to stress

    Get PDF
    We examined the association between posttraumatic stress disorder (PTSD) and gene expression using whole blood samples from a cohort of trauma-exposed white non-Hispanic male veterans (115 cases and 28 controls). 10,264 probes of genes and gene transcripts were analyzed. We found 41 that were differentially expressed in PTSD cases versus controls (multiple-testing corrected p<0.05). The most significant was DSCAM, a neurological gene expressed widely in the developing brain and in the amygdala and hippocampus of the adult brain. We then examined the 41 differentially expressed genes in a meta-analysis using two replication cohorts and found significant associations with PTSD for 7 of the 41 (p<0.05), one of which (ATP6AP1L) survived multiple-testing correction. There was also broad evidence of overlap across the discovery and replication samples for the entire set of genes implicated in the discovery data based on the direction of effect and an enrichment of p<0.05 significant probes beyond what would be expected under the null. Finally, we found that the set of differentially expressed genes from the discovery sample was enriched for genes responsive to glucocorticoid signaling with most showing reduced expression in PTSD cases compared to controls

    Corticosteroids and regional variations in thickness of the human cerebral cortex across the lifespan

    Get PDF
    International audienceExposures to life stressors accumulate across the lifespan, with possible impact on brain health. Little is known, however, about the mechanisms mediating age-related changes in brain structure. We use a lifespan sample of participants (n = 21 251; 4–97 years) to investigate the relationship between the thickness of cerebral cortex and the expression of the glucocorticoid- and the mineralocorticoid-receptor genes (NR3C1 and NR3C2, respectively), obtained from the Allen Human Brain Atlas. In all participants, cortical thickness correlated negatively with the expression of both NR3C1 and NR3C2 across 34 cortical regions. The magnitude of this correlation varied across the lifespan. From childhood through early adulthood, the profile similarity (between NR3C1/NR3C2 expression and thickness) increased with age. Conversely, both profile similarities decreased with age in late life. These variations do not reflect age-related changes in NR3C1 and NR3C2 expression, as observed in 5 databases of gene expression in the human cerebral cortex (502 donors). Based on the co-expression of NR3C1 (and NR3C2) with genes specific to neural cell types, we determine the potential involvement of microglia, astrocytes, and CA1 pyramidal cells in mediating the relationship between corticosteroid exposure and cortical thickness. Therefore, corticosteroids may influence brain structure to a variable degree throughout life
    corecore